Sinc Based Inverse Laplace Transforms, Mittag-Leffler Functions and Their Approximation for Fractional Calculus
نویسندگان
چکیده
We shall discuss three methods of inverse Laplace transforms. A Sinc-Thiele approximation, a pure Sinc, and Sinc-Gaussian based method. The two last Sinc related are exact transforms which allow us numerical approximation using methods. transform converges exponentially does not use Bromwich contours for computations. apply the to Mittag-Leffler functions incorporating one, two, parameters. parameter function represents Prabhakar’s function. used solve fractional differential equations constant variable differentiation order.
منابع مشابه
Matrix Mittag-Leffler functions of fractional nabla calculus
In this article, we propose the definition of one parameter matrix Mittag-Leffler functions of fractional nabla calculus and present three different algorithms to construct them. Examples are provided to illustrate the applicability of suggested algorithms.
متن کاملA Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus
In a joint paper with Srivastava and Chopra, we introduced far-reaching generalizations of the extended Gammafunction, extended Beta function and the extended Gauss hypergeometric function. In this present paper, we extend the generalized Mittag–Leffler function by means of the extended Beta function. We then systematically investigate several properties of the extended Mittag–Leffler function,...
متن کاملOn certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملMittag-Leffler Functions and Their Applications
Motivated essentially by the success of the applications of the Mittag-Leffler functions in many areas of science and engineering, the authors present, in a unified manner, a detailed account or rather a brief survey of the Mittag-Leffler function, generalized Mittag-Leffler functions, MittagLeffler type functions, and their interesting and useful properties. Applications of G. M. MittagLeffler...
متن کاملFractional Calculus of the Generalized Mittag-Leffler Type Function
We introduce and study a new function called R-function, which is an extension of the generalized Mittag-Leffler function. We derive the relations that exist between the R-function and Saigo fractional calculus operators. Some results derived by Samko et al. (1993), Kilbas (2005), Kilbas and Saigo (1995), and Sharma and Jain (2009) are special cases of the main results derived in this paper.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and fractional
سال: 2021
ISSN: ['2504-3110']
DOI: https://doi.org/10.3390/fractalfract5020043